Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Microbiol ; 72(2)2023 Feb.
Article in English | MEDLINE | ID: covidwho-2245232

ABSTRACT

Aiming to contribute with more data on the presence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in outdoor environments, we performed air sampling in outdoor terraces from restaurants in three major cities of Portugal in April 2021, following the third wave lockdown release in the country. Air samples (n=19) were collected in 19 restaurant terraces during lunch time. Each air sample was collected using a Coriolis Compact air sampler, followed by RNA extraction and real-time quantitative PCR for the detection of viral RNA. Viral viability was also assessed through RNAse pre-treatment of samples. Only one of the 19 air samples was positive for SARS-CoV-2 RNA, with 7337 gene copies m-3 for the genomic region N2, with no viable virus in this sample. The low number of positive samples found in this study is not surprising, as sampling took place in outdoor settings where air circulation is optimal, and aerosols are rapidly dispersed by the air currents. These results are consistent with previous reports stating that transmission of SARS-CoV-2 in outdoor spaces is low, although current evidence shows an association of exposures in settings where drinking and eating is possible on-site with an increased risk in acquiring SARS-CoV-2 infection. Moreover, the minimal infectious dose for SARS-CoV-2 still needs to be determined so that the real risk of infection in different environments can be accurately established.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Portugal/epidemiology , RNA, Viral/genetics , Communicable Disease Control , Respiratory Aerosols and Droplets
2.
Int J Environ Res Public Health ; 19(10)2022 05 13.
Article in English | MEDLINE | ID: covidwho-1855617

ABSTRACT

Airborne transmission is mainly associated with poorly ventilated and crowded indoor environments where people stay for long periods of time. As such, public transport is often perceived as having a high risk for the transmission of SARS-CoV-2. Considering that data on the detection of SARS-CoV-2 in public transport systems are scarce, we performed air sampling for SARS-CoV-2 in indoor and outdoor spaces of public transport systems in Portugal. Air (n = 31) and surface (n = 70) samples were collected using a Coriolis® Compact microbial air sampler and sterile flocked plastic swabs, respectively. Samples were extracted and analyzed through RT-qPCR. Only two air samples from an outdoor and a partially open space were found to be positive for SARS-CoV-2 RNA. No positive surface samples were detected. These results indicate that the viral concentration in ambient air in public transport systems is linked to the number of people present in that environment and whether they are wearing properly fitting masks. Considering the current lifting of COVID-19 restrictions around the world, it is essential that people continue to wear masks in both indoor and outdoor environments, especially in crowded spaces. More studies on this topic are needed to fully elucidate the real risk of infection in outdoor spaces.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Cities , Humans , Portugal/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics
3.
Int J Environ Res Public Health ; 19(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1613761

ABSTRACT

As the third wave of the COVID-19 pandemic hit Portugal, it forced the country to reintroduce lockdown measures due to hospitals reaching their full capacities. Under these circumstances, environmental contamination by SARS-CoV-2 in different areas of one of Portugal's major Hospitals was assessed between 21 January and 11 February 2021. Air samples (n = 44) were collected from eleven different areas of the Hospital (four COVID-19 and seven non-COVID-19 areas) using Coriolis® µ and Coriolis® Compact cyclone air sampling devices. Surface sampling was also performed (n = 17) on four areas (one COVID-19 and three non-COVID-19 areas). RNA extraction followed by a one-step RT-qPCR adapted for quantitative purposes were performed. Of the 44 air samples, two were positive for SARS-CoV-2 RNA (6575 copies/m3 and 6662.5 copies/m3, respectively). Of the 17 surface samples, three were positive for SARS-CoV-2 RNA (200.6 copies/cm2, 179.2 copies/cm2, and 201.7 copies/cm2, respectively). SARS-CoV-2 environmental contamination was found both in air and on surfaces in both COVID-19 and non-COVID-19 areas. Moreover, our results suggest that longer collection sessions are needed to detect point contaminations. This reinforces the need to remain cautious at all times, not only when in close contact with infected individuals. Hand hygiene and other standard transmission-prevention guidelines should be continuously followed to avoid nosocomial COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Hospitals , Humans , Pandemics , Portugal , RNA, Viral
5.
Sci Total Environ ; 798: 149231, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1331224

ABSTRACT

Little is known about contaminated surfaces as a route of transmission for SARS-CoV- 2 and a systematic review is missing and urgently needed to provide guidelines for future research studies. As such, the aim of the present study was to review the current scientific knowledge and to summarize the existing studies in which SARS-CoV-2 has been detected in inanimate surfaces. This systematic review includes studies since the emergence of SARS-CoV-2, available in PubMed/MEDLINE and Scopus. Duplicate publications were removed, and exclusion criteria was applied to eliminate unrelated studies, resulting in 37 eligible publications. The present study provides the first overview of SARS-CoV-2 detection in surfaces. The highest detection rates occurred in hospitals and healthcare facilities with COVID-19 patients. Contamination with SARS-CoV-2 on surfaces was detected in a wide range of facilities and surfaces. There is a lack of studies performing viability testing for SARS-CoV-2 recovered from surfaces, and consequently it is not yet possible to assess the potential for transmission via surfaces.


Subject(s)
COVID-19 , SARS-CoV-2 , Drug Contamination , Hospitals , Humans , RNA, Viral
6.
Sci Total Environ ; 764: 142802, 2021 Apr 10.
Article in English | MEDLINE | ID: covidwho-836823

ABSTRACT

BACKGROUND: Although an increasing body of data reports the detection of SARS-CoV-2 RNA in air, this does not correlate to the presence of infectious viruses, thus not evaluating the risk for airborne COVID-19. Hence there is a marked knowledge gap that requires urgent attention. Therefore, in this systematic review, viability/stability of airborne SARS-CoV-2, SARS-CoV and MERS-CoV viruses is discussed. METHODS: A systematic literature review was performed on PubMed/MEDLINE, Web of Science and Scopus to assess the stability and viability of SARS-CoV, MERS-CoV and SARS-CoV-2 on air samples. RESULTS AND DISCUSSION: The initial search identified 27 articles. Following screening of titles and abstracts and removing duplicates, 11 articles were considered relevant. Temperatures ranging from 20 °C to 25 °C and relative humidity ranging from 40% to 50% were reported to have a protective effect on viral viability for airborne SARS-CoV and MERS-CoV. As no data is yet available on the conditions influencing viability for airborne SARS-CoV-2, and given the genetic similarity to SARS-CoV and MERS-CoV, one could extrapolate that the same conditions would apply. Nonetheless, the effect of these conditions seems to be residual considering the increasing number of cases in the south of USA, Brazil and India, where high temperatures and humidities have been observed. CONCLUSION: Higher temperatures and high relative humidity can have a modest effect on SARS-CoV-2 viability in the environment, as reported in previous studies to this date. However, these studies are experimental, and do not support the fact that the virus has efficiently spread in the tropical regions of the globe, with other transmission routes such as the contact and droplet ones probably being responsible for the majority of cases reported in these regions, along with other factors such as human mobility patterns and contact rates. Further studies are needed to investigate the extent of aerosol transmission of SARS-CoV-2 as this would have important implications for public health and infection-control policies.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Brazil , Humans , India , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL